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The impact of neuron count and learning rate on the accuracy 
of an artificial neural network (ANN) in predictive modeling of 
nonlinear dynamical systems is explored. This study is focused 
on the Lorenz, Rössler, and Chen systems, which are renowned 
for their sensitivity to initial conditions, intricate dynamics, and 
strangely attractive plot of their trajectories. The model's 
performance was assessed using symmetric mean absolute 
percentage error (SMAPE) and coefficient of determination (𝑅2).  
The results shows that the model with 24 neurons and 0.1 
learning rate consistently outperformed other parameters 
across all three systems. 
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Dynamical systems can be found in a multitude of disciplines, including weather forecasting, social 
dynamics, and finance. Traditional modelling and analysis methods often found themselves 
inadequate in capturing the nonlinear and intricate nature of such systems. Researchers have 
grappled with the inherent complexity of nonlinear dynamical systems, which are characterized by 
their sensitivity to initial conditions and their unpredictable progression over time.  
 
A common approach to analyzing these systems is through time series analysis. However, traditional 
time series analysis methods have limitations when dealing with nonlinear data, mainly because they 
are based on linear assumptions and cannot capture the complex dynamics of nonlinear systems 
(Kantz & Schreiber, 2004). This has led to misinterpretations and inaccurate forecasts when using 
such methods for predicting nonlinear and chaotic systems. 
 
The pioneering efforts by Narendra and Parthasarathy to utilize ANNs for predictive modelling and 
control of chaotic systems marked the beginning of an exciting exploration of this area in the early 
1990s (Narendra & Parthasarathy 1990; Narendra & Parthasarathy 1992).  
 
This study aims to explore the impact of neuron count and learning rate on the accuracy of a numpy-
based neural network in predictive modeling three-dimensional nonlinear dynamical systems.                       
In contrast to existing neural network libraries employed for predictive modeling, libraries such as 
TensorFlow, Scikit-learn and Keras (Wagh, 2020), this study takes a less common approach where 
the neural network used was developed entirely using only the NumPy library.  
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MATERIALS AND METHODS 
 
Lorenz system 
 
The Lorenz system is renowned for giving rise to a chaotic attractor, a sophisticated geometric 
depiction of the progression of the system over a given time interval. This attractor is distinguished by 
its complex behavior and a unique characteristic of sensitivity to its initial conditions.                           
Minuscule variations in the starting conditions could give rise to significantly divergent outcomes 
(Lorenz, 1963). The Lorenz system is defined by the following equations: 
 
 𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥), 

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, 

𝑑𝑧

𝑑𝑡
= (𝑥𝑦 − 𝛽𝑧), 

 

  
 
 
                                                   
(1) 

            
where σ, ρ, and β are parameters that control the behavior of the system and x, y, and z are the state 
variables of the system. 
 
Rössler system 
 
The Rössler system, proposed by Otto Rössler in 1976, is another example of a three-dimensional 
chaotic attractor that possesses a spiral structure. The system's trajectory wraps around this attractor, 
following a complex pattern that enhances its unpredictability (Rössler, 1976). The mathematical 
formulation of the Rössler system is defined by the following equations: 
 
 
 
 
 
 
 
 

 
 𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧, 

𝑑𝑦

𝑑𝑡
= −𝑥 + 𝑎𝑦, 

𝑑𝑧

𝑑𝑡
= 𝑏 + 𝑧(𝑥 − 𝑐) 

 

 

 

 

                                                     

(2) 

 
where x, y, and z are the state variables, and a, b, and c are system parameters and x, y, and z are 
the state variables of the system. 
 
Chen system 
 
Another renowned chaotic system that stands out for its distinctive behavior and structure                       
(Chen, 1999). The mathematical formulation of the Chen system is defined by the following equations: 
 𝑑𝑥

𝑑𝑡
= 𝑎(𝑦 − 𝑥), 

𝑑𝑦

𝑑𝑡
= (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦, 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧 

 

 
 
 
                                                     
(3) 

 
where x, y, and z are the state variables, and a, b, and c are system parameters and x, y, and z are 
the state variables of the system. 
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The  R2 metric are used to measure how well observed outcomes are replicated by the model.                            
The  R2 metric are used to measure how well observed outcomes are replicated by the model. It measures 
the proportion of the variance in the dependent variable that is explained by the independent variable. 
The formula for R2 are calculated using the equations (5): 
 

 
𝑅2 = 1 −

∑ (𝑦𝑎𝑐𝑡 − 𝑦𝑝𝑟𝑒)𝑛
1

2

∑ (𝑦𝑎𝑐𝑡 − 𝑦𝑎𝑐𝑡̅̅ ̅̅ ̅)𝑛
1

2 

 

 
  (5) 

where 𝑦𝑎𝑐𝑡̅̅ ̅̅ ̅, is the mean of the actual value, and 𝑦𝑝𝑟𝑒̅̅ ̅̅ ̅ is the mean of the predicted value. 

 
Artificial neural networks 
 
ANNs have garnered recognition for its effective performance in predictive modelling tasks such as 
classification and regression, often outdoing traditional statistical models (LeCun et al., 2015). It has the 
potential to model complex, nonlinear relationships between input and output variables, making it an ideal 
candidate for addressing the limitations of traditional time series analysis methods in predicting nonlinear 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 1. Schematic diagram of an artificial neural network with three layers (Isabona et al, 2022) 

 
 
Data Generation 
 
For each system 10,000 observations were generated. The observations were then used as training 
and testing datasets for the neural network model.  The parameters and initial values used for each 
system are as follows: 

i. Lorenz (σ = 10, β =
8

3
, ρ = 35; xo = 1,  yo = 1, zo = 1) 

ii. Rossler (a = 0.2, b = 0.2, c = 5.7;  xo = 0.1,  yo = 0.1, zo = 0.1) 
iii. Chen (a = 35, b = 3, c = 28;  xo = 1,  yo = 1, zo = 1) 

 
Performance metrics 
 
To assess the performance of the machine learning model SMAPE and R2 were used.  
SMAPE, an enhanced version of MAPE (mean absolute percentage error), measures the relative error 
between the predicted and the actual values. It falls within the range of (0%, +∞), wherein lower values 
signify enhanced predictive accuracy. An ideal performance yields a SMAPE of 0%, signifying a 
flawless predictive model (Jierula et al, 2021). It is calculated using the equation (4): 
 
 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑝𝑟𝑒 − 𝑦𝑎𝑐𝑡

(|𝑦𝑝𝑟𝑒| − |𝑦𝑎𝑐𝑡|)/2
|

𝑛

𝑖=1

 

 

 
                                                  
(4) 
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Figure 1 illustrates a standard neural network model. The network structure is comprised of an input layer 
(𝑔1, 𝑔2, ..., 𝑔𝑖), a predicted output (𝑦1, 𝑦2,, ..., 𝑦ℎ), and 𝑘ℎ hidden nodes. Each layer is differentiated by a 

series of weighted connections, marked as 𝑤𝑖𝑗
1  and 𝑤𝑗𝑛

2  for the links between the input-hidden and hidden-

output layers, respectively. The thresholds for the hidden nodes are denoted by 𝑐𝑗. 

 
The output from the neural network, specifically corresponding to the jth neuron linked with the kth node, 
can be expressed using Equation 7.  
 
 

�̂�𝑛(𝑡) = ∑ 𝑤𝑗
2𝐹(𝑤𝑖𝑗

1 𝑔𝑖(𝑡) + 𝑐𝑗)

𝑘ℎ

𝑗=1

  

 

 
                                                  
(7) 

 
𝑓𝑜𝑟 1 ≤ 𝑛 < 𝑚, 1 ≤ 𝑗 < 𝑘ℎ , (𝑤𝑗 , 𝑗 = 0, 1, … , 𝑘ℎ), (𝑤𝑖𝑗 , 𝑖 = 0, 1, … , 𝑚; 𝑗 = 0, 1, … , 𝑘ℎ) 

 
 where m, h, and 𝑘ℎ indicate the input node number, hidden node, and hidden node number, respectively, 
and i represents the input to the jth hidden layer neuron. The sigmoid activation function was used in this 
study and is defined by Equation 8,  
 

𝐹(𝑎) =
1

1 + 𝑒−𝑎
 

 

                                                
(8) 

   
Where F(a) being a set of real numbers (Isabona et al, 2022).  
 
The algorithm of the ANN implemented in this study is shown in Figure 2.  
 

Algorithm 1 Artificial neural network 

1. Define Functions 

 Sigmoid(x) ⇒ return 
1

1+𝑒−𝑥 

 ForwardProp(X, W1, b1, W2, b2) 

 Compute Z1 = X*W1 + b1 

 Apply Sigmoid activation function: A1 = Sigmoid(Z1) 

 Compute Z2 = A1*W2 + b2 

 return Z2, A1 

 BackProp(X, y, �̂�, A1, W2) 

 Compute dZ2 = �̂�- y, dW2 = (1/m) * A1.T * dZ2 

 Compute db2 = (1/m) * sum(dZ2), dZ1 = dZ2 * W2.T * A1 * (1 - A1) 

 Compute dW1 = (1/m) * X.T * dZ1, db1 = (1/m) * sum(dZ1) 

 return dW1, db1, dW2, db2 
2. Load and split data into training and testing sets 
3. Initialize weights and biases 
4. Training 

 For each epoch do: 

 ForwardProp(X, W1, b1, W2, b2) 

 BackProp(X, y, �̂�, A1, W2) 

 Update weights and biases: W1 -= lr * dW1, b1 -= lr * db1, W2 -= lr * dW2, b2 -
= lr * db2 

5. Evaluate model 

 Calculate and print evaluation metrics 
6. Export predictions to a CSV file 
7. Visualize original and predicted data 

 

Figure 2. Algorithm of the ANN model employed 
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RESULTS 
 

Table 1. Accuracy ratings of Lorenz system at 10,000 observations and 1000 Epochs. 

3 neurons SMAPE 𝑹𝟐 
Learning Rate   

0.001 0.06700 0.06800 

0.01 0.06600 0.00600 

0.1 0.05400 0.29200 

6 neurons SMAPE 𝑹𝟐 
Learning Rate   

0.001 0.06610 0.02950 

0.01 0.03930 0.60510 

0.1 0.02980 0.81010 

12 neurons SMAPE 𝑹𝟐 
Learning Rate   

0.001 0.06350 0.05070 

0.01 0.02720 0.82110 

0.1 0.02910 0.82140 

24 neurons SMAPE 𝑹𝟐 
Learning Rate   

0.001 0.05920 0.16840 

0.01 0.02456 0.86050 

0.1 0.02740 0.84120 

36 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.06047 0.13550 

0.01 0.02440 0.87105 
0.1 0.02545 0.86123 

 
 

Table 2. Accuracy ratings of Rössler system at 10,000 observations and 1000 Epochs. 

3 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.43468 0.03813 

0.01 0.40418 0.17765 

0.1 0.37604 0.29339 

6 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.39174 0.09357 

0.01 0.39608 0.18399 

0.1 0.30781 0.33243 

12 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.39705 0.13582 

0.01 0.40060 0.19649 

0.1 0.35773 0.32637 
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24 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.38937 0.17006 

0.01 0.39414 0.23619 

0.1 0.32590 0.34389 

36 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.39987 0.18369 

0.01 0.38970 0.23968 

0.1 0.33862 0.34583 

 
 
 

Table 3. Accuracy ratings of Chen system at 10,000 observations and 1000 Epochs. 

3 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.06250 -0.12865 

0.01 0.05635 0.03188 

0.1 0.03822 0.51097 

6 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.05859 -0.03246 

0.01 0.04633 0.28140 

0.1 0.04056 0.48095 

12 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.05780 -0.01999 

0.01 0.03172 0.62217 

0.1 0.03192 0.64320 

24 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.05588 0.04042 

0.01 0.03292 0.60669 

0.1 0.02895 0.68775 

36 neurons SMAPE 𝑹𝟐 

Learning Rate   

0.001 0.05591 0.03474 

0.01 0.03026 0.65069 

0.1 0.03098 0.65400 
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Figure 3. Comparison of model accuracy metrics for Lorenz, Rössler, and Chen Systems. 
 
The presented results are the performance of the ANN models trained to forecast the dynamics of the 
Lorenz, Rössler, and Chen systems. Five separate models were trained, each with varying neurons:               
3, 6, 12, 24, and 36 in each layer. Furthermore, learning rates of 0.001, 0.01, and 0.1 were employed for 
training these models. 

 
An analysis of the Lorenz system reveals a positive correlation between the number of neurons in the neural 
network and the performance of the model. It is evident that the model equipped with 36 neurons 
outperforms others with the lowest SMAPE and highest 𝑅2 values. This indicates superior accuracy in 
predicting the Lorenz system compared to the models with 3, 6, 12, and 36 neurons. As for the learning 
rate, a value of 0.01 consistently led to the optimal performance for the Lorenz system. 
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The Rössler system mirrors a similar trend. As the number of neurons escalates, so does the performance 
of the model. The model with 24 neurons exhibits the lowest SMAPE scores and the highest 𝑅2 values, 
reiterating its accuracy in predicting the Rössler system. As observed in the Lorenz system, the model with 
3 neurons underperforms, and the model with 6 neurons cannot rival the accuracy of the models with 12, 
24, and 36 neurons. A learning rate of 0.1 ensures the best performance for the Rössler system (Table 2). 
 
An increase in the number of neurons enhances the performance of the Chen system model. The model 
with 3 neurons lags behind, while the one with 24 neurons leads, much like in the other systems. A learning 
rate of 0.1 proves optimal for the Chen system too (Table 3). 
 
These results suggest that increasing the neuron count in the neural network bolsters performance when 
predicting these chaotic systems. Moreover, a learning rate of 0.1 emerges as the most effective across all 
three systems.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. (a) Lorenz system original data vs predicted data at 3 neurons and 0.001 learning rate, (b) 
Lorenz system original data vs predicted data at 12 neurons and 0.01 learning rate 
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Figure 4. (a) Lorenz system original data, (b) predicted data at 36 neurons and 0.01 learning rate 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. (a) Rössler system original data vs predicted data at 3 neurons and 0.001 learning rate,                   
(b) Rössler system original data vs predicted data at 12 neurons and 0.01 learning rate 
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Figure 6. (a) Rössler system original data, (b) predicted data at 24 neurons and 0.1 learning rate 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

Figure 7. (a) Chen system original data vs predicted data at 3 neurons and 0.001 learning rate,                      
(b) Chen system original data vs predicted data at 12 neurons and 0.01 learning rate 
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Figure 8. (a) Chen system original data, (b) predicted data at 24 neurons and 0.1 learning rate 
 
 
 
DISCUSSION 
 
The objective of this study was to assess the impact of neuron count and learning rate on the accuracy of 
a NumPy-based ANN in predicting three well-known nonlinear dynamical systems: Lorenz, Rössler,                   
and Chen. The models were trained on various combinations of neurons (3, 6, 12, 24, and 36) and learning 
rates (0.001, 0.01, and 0.1) to investigate their influence on the predictive accuracy. In summary, the overall 
best-performing models were as follows: 
 

Lorenz System: 36 neurons with a learning rate of 0.01. 
Rössler System: 24 neurons with a learning rate of 0.1. 
Chen System: 24 neurons with a learning rate of 0.1. 

 
Findings reveal that the model endowed with 24 neurons and 0.1 learning rate consistently outperformed 
others across all three systems. 
 
Careful selection of the learning rate and number of neurons are suggested as these factors can notably 
enhance the predictive accuracy of the neural network when dealing with chaotic systems.                                  
Further investigations focusing on additional factors like the number of epochs, the choice of activation 
function, and the specific architecture of the neural network are recommended.  
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